Laminar-turbulent transition process in pulsatile flow.

نویسنده

  • E L Yellin
چکیده

A controlled ex-vivo study of a simple, sinusoidally oscillating flow in a rigid, constant-area, smooth tube, has produced significant insight into the laminar-turbulent transition phenomenon. The development of turbulence was studied by analyzing the dynamic characteristics of the transition process; i.e., the velocity, growth rate, and intermittency which describe the generation and propagation of turbulent slugs. A new concept, the relaxation time, has been introduced to interpret the effect of a periodic flow component superposed on a mean flow. Classical stability concepts, such as the point of inflection criterion and the Reynolds number, which have been derived from steady-flow analysis, are shown to require modification when applied to an oscillatory flow. Neither the mean nor the instantaneous Reynolds number is a sufficient criterion for determining the transition of laminar to turbulent flow in a pulsatile system. Other necessary criteria are: (1) a source of disturbances, (2) the relaxation time, and (3) the distance from the fluid under observation to the source of disturbance. The concept of relaxation time indicates that slowly oscillating flows of large amplitude tend to suppress or destroy turbulence downstream from sources of disturbance. Qualitative observations are presented which indicate that systolic acceleration may be laminar regardless of the large value of the instantaneous Reynolds number, while diastolic deceleration probably produces disturbed, but not turbulent or highly dissipative, flow. ADDITIONAL

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar-to-turbulent transition in pulsatile flow through a stenosis.

Laminar-to-turbulent transition in pulsatile flow through a stenosis is studied by means of three-dimensional numerical simulations. The flow transition is associated with the occurrence of a flow instability initiating in the stenosis region. The instability is manifested by a three-dimensional symmetry-breaking and leads to asymmetric separation and intense swirling motion downstream of the s...

متن کامل

Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model

Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...

متن کامل

Aerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy

The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...

متن کامل

Numerical Study of Turbulent Pulsatile Blood Flow through Stenosed Artery Using Fluid-Solid Interaction

The turbulent pulsatile blood flow through stenosed arteries considering the elastic property of the wall is investigated numerically. During the numerical model validation both standard k-ε model and RNG K-ε model are used. Compared with the RNG K-ε model, the standard K-ε model shows better agreement with previous experimental results and is better able to show the reverse flow region. Also, ...

متن کامل

Pulsatile Non-Newtonian Fluid Flows in a Model Aneurysm with Oscillating Wall

This research presents a numerical simulation of an unsteady two-dimensional channel flow of Newtonian and some non-Newtonian fluids using the finite-volume method. The walls of the geometry oscillate sinusoidally with time. We have used the Cartesian curvilinear coordinates to handle complex geometries, i.e., arterial stents and bulges and the governing Navier–Stokes equations have been modifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 1966